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Disorder effect on the focus image of sonic crystals in air
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When acoustic waves propagate in two-dimensional sonic crystals composed of parallel rigid cylinders in
air, anisotropic band gaps, such as a partial gap and deaf band, forbid the waves within certain frequency
regions from propagating along certain directions, thus forming a stable imaging focus effect. If the introduced
disorder has not destroyed the original anisotropic band gap, this unique effect still exists, although the focused
image becomes blurred. Once the sample reaches complete disorder, the anisotropic band gap is destroyed, and
this effect also disappears.
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I. INTRODUCTION

When an electron, such as a quantum wave, propagates
inside a periodic atom array, it is modulated with a periodic
structure, thus forming an electronic band structure. Simi-
larly, once a light wave or acoustic wave propagates inside a
periodic structure, due to the property of the Bloch wave, a
band structure with a band gap also occurs. The correspond-
ing lattice structure is called a photonic crystal �1� or sonic
crystal �2–6�.

Several years ago, it was predicted that, based on a flat
slab photonic crystal, a superlensing phenomenon should be
realized within certain frequency regimes �7�. The following
year, this focusing image effect was indeed observed across
flat photonic crystal slabs. Initially, negative refraction was
introduced to explain this superlensing effect, which also
yielded a new concept, namely left-handed materials �8�.
Meanwhile, because of the similarities between acoustic and
light waves, the image superlensing phenomenon also occurs
in sonic crystals �9,10�. Here, a new explanation is proposed
that, due to the anisotropic band gap of the periodic lattice, a
wave is permitted to propagate only in certain directions and
frequency regimes, where the so-called wave-guiding or self-
collimation effects can be formed.

As mentioned above, an acoustic wave propagating inside
a periodic structure produces a band structure, where an an-
isotropic band gap is a condition for the superlensing effect.
Yet when we fabricate a sonic crystal, it is possible to intro-
duce disorder into the periodic structure. Acoustic wave
propagation in a random or completely-disordered structure
has been independently investigated by Håkansson et al. �11�
and Hoskinson et al. �12�. Recently, Gupta found that the
strength of disorders in sonic crystals can affect the robust-
ness of the focusing behavior �13�. Based on these studies,
the problems as to what is the effect of the introduced disor-
der on the superlensing effect and how to discover its under-

*Permanent address: Department of Physics, Fudan University,

Shanghai 200433, China.

1539-3755/2006/73�5�/056615�4� 056615
lying mechanism are still open, which is the purpose of the
present paper. The resolutions of these problems may pave
the way for new applications of sonic crystals, such as ultra-
sonic imaging and manipulation of acoustic flows.

II. THEORY

Let us assume the formation of a square array of N rigid
cylinders with radius a=1.5 cm in a sonic crystal, whose
lattice constant is d=11.0 cm. We then place an acoustic line
source transmitting monochromatic waves at a certain spatial

point rs
� . As an acoustic wave is submitted by the source, the

scattered wave from each cylinder also contributes to the
total waves, forming so-called multiply scattering. The final
wave reaching a receiver located at r�r is the sum of the direct
wave from the source and the scattered waves from all the
cylinders. Such scattering could be solved exactly, following
a method proposed by Twersky �14�.

The acoustic intensity field is defined as �p�r���2, and the
acoustic transmission through the cylinder arrays is normal-
ized as T= p / p0, where p�r�� is the the total wave at any space
point and p0 is the direct incident wave from the source. The
total wave incident around the ith scatterer pin

i �r�� is a super-
position of the direct contribution from the source p0�r�� and
the scattered waves from all other scatterers:

pin
i �r�� = p0�r�� + �

j=1,j�i

N

ps�r�,r� j� . �1�

The scattered wave from the jth cylinder can be written as

ps�r�,r� j� = �
n=−�

�

i�An
j Hn

�1��k�r� − r� j��ein�r�−r� j, �2�

where An
i is the coefficient to be determined, Hn

�1� is the
nth-order Hankel function of the first kind, and �r�−r�j

is the
azimuthal angle of the vector r�−r�i relative to the positive x
axis.

The total incident wave around the ith scatterer, pin
i �r��
from the source, and the scattered waves from all other scat-
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terers can be expressed in terms of the Bessel function as:

pin
i �r�� = �

n=−�

�

Bn
i Jn�k�r� − r�i��ein�r�−r�i. �3�

Using the addition theorem for Bessel functions, the scat-
tered waves ps�r� ,r� j� for each j� i can be expressed in terms
of the modes with respect to the ith scatterer, thus giving

Bn
i = Sn

i + �
j=1,j�i

N

Cn
j,i �4�

with

Sl
i = i�H−l

�1��k�− il�r�i
�� �5�

and

Cn
j,i = �

l=−�

�

i�Al
jHl−n

�1� �k�r�i − r� j��exp�i�l − n��r�i−r�j
� . �6�

FIG. 1. �Color online� �a� Band structure of a square lattice of
rigid cylinders in air, with a partial gap between the two horizontal
lines, with the normalized transmission versus frequency for the
source inside �b� and outside �c� the sonic crystal.

FIG. 2. �Color online� Imaging fields for the frequencies of
1.50 kHz located within the partial gap. �a1� and �a2� show the
intensity field inside and outside the sonic crystal, respectively.
When a 0.5 disorder degree is introduced into the sonic crystal, �b1�
and �b2� plot the intensity fields inside and outside the sample,

respectively.
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Using the usual boundary conditions for each cylinder, a
matrix equation can be easily obtained as

Bn
i = i��n

i An
i , �7�

where �n
i is a transfer matrix relating the acoustic properties

of the scatterers,

�n
i = �Hn

�1��kai�Jn��kai/hi� − gihiHn
�1���kai�Jn�kai/hi�

gihiJn��kai�Jn�kai/hi� − Jn�kai�Jn��kai/hi� � . �8�

Thus, the total wave at any desired point outside the cylin-
ders can be obtained as

p�r�� = p0�r�� + �
i=1

N

�
n=−�

�

i�An
i Hn

�1��k�r� − r�i��ein�r�−r�i. �9�

The acoustic intensity is the square module of the transmitted
wave where the normalized transmission is given as T
	 p / p0.

In order to describe the disorder effect on the scattering
process, we introduce two new concepts: One is the filling
factor fs=��a /d�2=0.05842, which is defined as the area
occupation of the cylinders �per unit area�, and the other is
the disorder factor x denoting the disorder degree, where x
ranges from 0 to 1, with x=0 and x=1 corresponding to the
periodic case and complete randomness, respectively. We de-
fine the maximal disorder amplitude as L= �d−2.0�a� /2.0.
The disorder factor �=x�L then denotes the random ampli-
tude, where x indicates the disorder degree ranging from 0 to
1, with x=0 and x=1 corresponding to the periodic case and

FIG. 3. �Color online� Imaging fields for a transmitting source
located inside a round sample consisting of rigid cylinders. �a1� and
�a2� show the intensity field inside and outside the sonic crystal,
respectively. For a 0.5 disorder degree introduced into the sonic
crystal, �b1� and �b2� plot the intensity fields inside and outside the
sample, respectively.
completely randomness, respectively.
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III. RESULTS AND DISCUSSION

When an acoustic wave propagates inside a lattice of
square rigid cylinders, due to its Bloch wave property, the
band structure in the first Brillouin zone is well formed, as
shown in Fig. 1�a�. In the first Brillouin zone, it is apparent
that the various dispersion bands lead to anisotropic band
gaps along the �X and �M directions. We designate the fre-
quency range from 1.42 to 1.64 kHz as the partial band gap
and the region from 2.08 to 2.72 kHz as the deaf band.
Within the partial gap, waves are prohibited from propagat-
ing along the �X direction, i.e., the �1,0� direction. Similarly,
for frequencies inside the deaf band, propagation is inhibited
along the �1,1� direction. Transmissions for the source inside
and outside the sonic crystal are shown in Figs. 1�b� and
1�c�, respectively. We see a small shift of the forbidden
propagation regimes caused by the boundary effect, where
the transmissions just reflect the anisotropic band gaps. For
the acoustic waves in just certain directions, the superlensing
effect can be caused by either the partial band gaps or the
deaf bands, which can self-guide the wave propagation into
passing band directions �9�. Since the focused imaging phe-
nomena are qualitatively similar for both the partial gap and
the deaf band, we select one case—the 1.50 kHz acoustic
wave within the partial band gap—to explore the disorder
effect on the superlensing phenomenon.

For acoustic wave transmission inside a sonic crystal, we
construct a slab of size 9d�49d and place the acoustic
source at one lattice constant away from the left side of the
slabs. By virtue of the partial gap region along �X shown in
Fig. 1�a�, acoustic waves are prohibited from propagation
along the �1,0� direction inside the sonic crystal. Thus, once
the source provides a 1.50 kHz acoustic wave, the wave is
transmitted along �1,1�, as shown in Fig. 2�a1�. A well-

FIG. 4. �Color online� Transmission along the �X and �M di-
rections when disorder is introduced, corresponding to the transmis-
sions when the source is inside and outside the sample, respectively.
�a1� and �a2� show the transmissions of the sample with a 0.5 dis-
order degree. �b1� and �b2� show the transmissions of the sample
with a 0.8 disorder degree. �c1� and �c2� show the transmissions of
the completely-disordered sample.
focused image point, shown in Fig. 2�a2�, is formed at the
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other side of the slab. When 0.5 disorder degree is introduced
into the slab, the perfect periodic structure is partly de-
stroyed. More importantly, the submitted acoustic wave still
can be focused at the other side of the slab �Fig. 2�b2��,
although strictly speaking, the waves cannot propagate along
the �1,1� direction �Fig. 2�b1��.

To more clearly exhibit these observations, we place a
transmitting source inside the sonic crystal, whose shape is
round with a 9d radius. Once the source is ignited, the acous-
tic wave propagates in the �1,1�, �−1,1�, �−1,−1�, and
�1,−1� directions, resulting in four images outside the crystal
along these four directions, as depicted in Figs. 3�a1� and
3�a2�. For the case where the source is inside sample, the
introduced 0.5 disorder degree does not destroy the focused
images in the four directions �see Fig. 3�b2��, yet the trans-
mission channel is not along a straight line in the original
four directions.

When a disorder degree is introduced into the sonic crys-
tal, we choose two cases—the source inside and outside the
sample—to show the wave transmission properties. In these
two cases, comparing Figs. 1�b� and 1�c�, while the intro-
duced disorder degree of the sample has reached 0.4, two
forbidden propagation regimes corresponding to the original
partial band gap and deaf band still exist, as shown in Figs.
4�a1� and 4�a2�. As the disorder degree increases and ap-
proaches 0.8, the forbidden propagation of the original par-
tial gap becomes weaker and slowly disappears, as shown in
Figs. 4�b1� and 4�b2�. As mentioned earlier, since anisotropic
band gaps are the conditions for the superlensing effect, it
becomes clear that when the disorder degree does not com-
pletely destroy the original anisotropic gaps, such as the par-
tial gap and deaf band, the superlensing phenomenon still
occurs. Naturally, once the system reaches a completely-

FIG. 5. �Color online� Imaging fields for a completely-
disordered sample. �a� and �c� correspond to the imaging fields of a
1.50 kHz acoustic wave for a transmitting source inside and outside
a completely disordered sample, respectively. �b� and �d� corre-
spond to the imaging fields of a 2.11 kHz acoustic wave for a trans-
mitting source located inside and outside the completely-disordered
sample, respectively.
disordered state, the two forbidden propagation regimes are
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destroyed and vanish, as shown in Figs. 4�c1� and 4�c2�.
Thus, when the source is fixed at 1d away from the left

side of a completely-disordered sample, the 1.50 kHz and
2.11 kHz acoustic waves within the original deaf band can-
not form a focused image due to the lack of anisotropic gaps,
as shown in Figs. 5�a� and 5�b�, respectively. The same as
above, this specific effect also cannot occur, even though the
1.50 kHz and 2.11 kHz line acoustic sources are placed in-
side the completely-disordered sample, as shown in Figs.
5�c� and 5�d�.

IV. SUMMARY

In summary, due to the anisotropic gap structure, an

acoustic wave is forbidden to propagate in certain directions

Sánchez-Dehesa, Phys. Rev. Lett. 88, 023902 �2001�.
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and frequency regions, leading to a stable imaging focus ef-
fect. If an introduced disorder does not destroy the forbidden
propagation regimes caused by the original anisotropic gaps,
such as the partial gap and deaf band, the focusing effect still
exists, while the focused image becomes blurred. Once a
sample reaches compete disorder, the forbidden propagation
regimes are destroyed, and this effect also disappears.
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